When a wave travels in a medium, the particle displacement is given by : $y = asin\, 2 \pi \,(bt -cx)$, where $a, b$ and $c$ are constants. The maximum particle velocity will be twice the wave velocity if
$c = \frac{1}{\pi a}$
$c = \pi a$
$b = ac$
$b = \frac{1}{ac}$
The equation of displacement of two waves are given as ${y_1} = 10\,\sin \,\left( {3\pi t\, + \,\pi /3\,} \right)$ , ${y_2} = 5\,\left( {\sin \,3\pi t + \,\sqrt 3 \,\cos \,3\pi t} \right)$ , then what is the ratio of their amplitude
An engine is moving towards a wall with a velocity $50\, ms^{-1}$ emits a note of $1.2\, kHz$. The speed of sound in air is $350\, ms^{-1}$. The frequency of the note after reflection from the wall as heard by the driver of the engine is ..... $kHz$
The apparent frequency of a sound wave as heard by an observer is $10\%$ more than the actual frequency. If the velocity of sound in air is $330\, m/sec$, then
$(i)$ The source may be moving towards the observer with a velocity of $30\,ms^{-1}$
$(ii)$ The source may be moving towards the observer with a velocity of $33\,ms^{-1}$
$(iii)$ The observer may be moving towards the source with a velocity of $30\,ms^{-1}$
$(iv)$ The observer may be moving towards the source with a velocity of $33\,ms^{-1}$
The figure represents the instantaneous picture of a transverse harmonic wave traveling along the negative $x$-axis. Choose the correct alternative $(s)$ related to the movement of the nine points shown in the figure. The stationary points is/are
Given below are some functions of $x$ and $t$ to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represent a travelling wave